Abstract

Adverse intrauterine environment has been considered a predisposing factor for fetal programming in preeclampsia. Using human umbilical vein endothelial cells (HUVECs), we specifically explored if aberrant histone methylation occurs in fetal endothelial cells in preeclampsia. Strikingly, we found that increased di-, and tri-methylation of histone H3 lysine 9 (H3K9me2 and H3K9me3) expression were associated with upregulation of methyltransferase G9a and downregulation of endothelial nitric oxide synthase and CuZn-SOD expression in preeclamptic HUVECs. We further demonstrated that hypoxia-induced hypermethylation of H3K9 and reduced CuZn-SOD expression mimicked what were seen in preeclamptic HUVECs and inhibition of G9a could attenuate these hypoxia-induced adverse events. Our study was the first to identify hypermethylation status in fetal endothelial cells in preeclampsia, which provides plausible evidence that increased oxidative stress in the intrauterine environment is likely a mechanism to induce aberrant histone modification in fetal endothelial cells which may have a significant impact on fetal programming in preeclampsia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.