Abstract

Heme-oxygenase-1 (HO-1), an important enzyme involved in vascular disease, transplantation, and inflammation, catalyzes the degradation of heme into carbon monoxide and biliverdin. It has been reported that overexpression of HO-1 inhibits osteoclastogenesis. However, the effect of HO-1 on osteoblast differentiation is still not clear. We here used adenoviral vector expressing recombinant human HO-1 and HO-1 inducer hemin to study the effects of HO-1 in primary cultured osteoblasts. The results showed that induction of HO-1 inhibited the maturation of osteoblasts including mineralized bone nodule formation, alkaline phosphatase activity and decreased mRNA expression of several differentiation markers such as alkaline phosphatase, osteocalcin, and RUNX2. Furthermore, downstream products of HO-1, bilirubin, carbon monoxide, and iron, are involved in the inhibitory action of HO-1. HO-1 can be induced by H(2)O(2), lipopolysaccharide and inflammatory cytokines such as TNF-alpha and IL-1beta in osteoblasts and also in STZ-induced diabetic mice. In addition, endogenous PPARgamma ligand, 15-deoxy-Delta(12,14)-prostaglandin-J2 (15d-PGJ2) markedly increased both mRNA and protein levels of HO-1 in osteoblasts via PI3K-Akt and MAPK pathways. Blockade of HO activity by ZnPP IX antagonized the inhibitory action on osteocalcin expression by hemin and 15d-PGJ2. Our results indicate that upregulation of HO-1 inhibits the maturation of osteoblasts and HO-1 may be involved in oxidative- or inflammation-induced bone loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.