Abstract

Polycystic ovary syndrome (PCOS) is a multifaceted metabolic disease linked with insulin resistance (IR) and obesity. Adiponectin, which is lower in IR states, exerts its glucose-lowering and anti-inflammatory effects by activating two receptors, ADIPOR1 and ADIPOR2. There are no data on the relative expression of these receptors in adipose tissue of PCOS women. We investigated the expression of adiponectin receptors from corresponding s.c. and omental (o.m.) adipose tissue in women with PCOS compared with matched non-PCOS women. As there is a disturbance in the steroid milieu in PCOS women, we also assessed the effects of testosterone and oestradiol on adiponectin receptors using adipocytes and adipocyte explants. Real-time RT-PCR and western blotting were used to assess the relative adiponectin receptor mRNA expression and protein production, respectively. Biochemical measurements were performed in our hospital's laboratory. We are the first to describe adiponectin receptor expression and production, in corresponding s.c. and o.m. human adipose tissues at the mRNA and protein level. We demonstrate the upregulation of mRNA expression and protein production of adiponectin receptors in women with PCOS, in s.c. and o.m. adipose tissue. Treatment of adipose tissue explants and adipocytes with testosterone and oestradiol induced the expression of adiponectin receptor mRNA and protein. There was a significant positive association between ADIPOR1/R2 expression and homeostasis model assessment, testosterone, oestradiol and triglycerides and a negative relationship with sex hormone-binding globulin. The precise reason for the upregulation of adiponectin receptors seen in PCOS women, a pro-diabetic state, is unknown, but it appears that sex steroids may play a role in their regulation in adipose tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.