Abstract

For first passage percolation on with i.i.d. bounded edge weights, we consider the upper tail large deviation event, i.e., the rare situation where the first passage time between two points at distance n is macroscopically larger than typical. It was shown by Kesten [24] that the probability of this event decays as . However, the question of existence of the rate function, i.e., whether the log‐probability normalized by n2 tends to a limit, remains open. We show that under some additional mild regularity assumption on the passage time distribution, the rate function for upper tail large deviation indeed exists. The key intuition behind the proof is that a limiting metric structure that is atypical causes the upper tail large deviation event. The formal argument then relies on an approximate version of the above which allows us to use independent copies of the large deviation environment at a given scale to form an environment at a larger scale satisfying the large deviation event. Using this, we compare the upper tail probabilities for various values of n. © 2021 Wiley Periodicals LLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.