Abstract
In this article we consider continuous functions f with period 2π and their approximation by trigonometric polynomials. This article is devoted to the study of estimates of the best angular approximations of generalized Liouville-Weyl derivatives by angular approximation of functions in the three-dimensional case. We consider generalized Liouville-Weyl derivatives instead of the classical mixed Weyl derivative. In choosing the issues to be considered, we followed the general approach that emerged after the work of the second author of this article. Our main goal is to prove analogs of the results of in the three-dimensional case. The concept of general monotonic sequences plays a key role in our study. Several well-known inequalities are indicated for the norms, best approximations of the r-th derivative with respect to the best approximations of the function f. The issues considered in this paper are related to the range of issues studied in the works of Bernstein. Later Stechkin and Konyushkov obtained an inequality for the best approximation f^(r). Also, in the works of Potapov, using the angle approximation, some classes of functions are considered. In subsection 1 we give the necessary notation and useful lemmas. Estimates for the norms and best approximations of the generalized Liouville-Weyl derivative in the three-dimensional case are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.