Abstract

Solid object water entry is a common problem in various natural, industrial and military applications, which involves large deformation of free surfaces and violent fluid–structure interactions. In computational fluid dynamics (CFD), this is a type of problem that tests the robustness and capacity of any CFD numerical algorithm. In this work, the newly-developed updated Lagrangian particle hydrodynamics (ULPH) method, which is a fluid version of peridynamics, is enhanced and applied to simulate solid object water entry problems. ULPH method is Lagrangian meshfree particle method that can ensure the specific free surface conditions automatically satisfied. The density filter and artificial viscosity diffusion are adopted in the ULPH scheme to stabilize and smooth the pressure field. In the process of a rigid body entering water, it may induce negative pressure in some areas of impact region, which can cause spurious tensile instability in some meshfree particle simulations, such as SPH and ULPH. A tensile instability control technique based on the ULPH framework has been developed to overcome the numerical instability. To validate the stability and accuracy of the ULPH approach in simulating water entry problems, several 2D and 3D examples of water entry have been carried out in this work. The necking and cavity pinch-off phenomena are visible in the numerical results. The simulation results of the ULPH method are well compared with experimental data and other numerical solutions. The water crown, cavity shapes and stream pattern formed around the rigid body entering the water can be well captured. The computation results show that the ULPH method has the ability to simulate the complex solid object water entry precess accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.