Abstract
Polyolefins are the most widely produced type of plastics owing to their low production cost and favorable properties. Their polymer backbone consists solely of inert C-C bonds, making them resistant and durable materials. Although this is an extremely useful attribute during their use phase, it complicates chemical recycling. In this work, different types of polyethylenes (PEs) are converted into ketone-functionalized PEs with up to 3.4% functionalized carbon atoms, in mild conditions (≤100 °C), using a titanosilicate catalyst and tert-butyl hydroperoxide as the oxidant. Subsequently, the introduced ketones are exploited as sites for heteroatom insertion. Through Baeyer-Villiger oxidation, in-chain esters are produced with yields up to 73%. Alternatively, the ketones can be converted into the corresponding oxime, which can undergo a Beckmann rearrangement to obtain in-chain amides, with yields up to 75%. These transformations allow access to polymers that are amenable to solvolysis, thereby enhancing their potential for chemical recycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.