Abstract

Accumulation of end-of-life plastics presents ongoing environmental concerns. One strategy to solve this grand challenge is to invent new techniques that modify post-consumer waste and impart new functionality. While promising approaches for the chemical upcycling of commodity polyolefins and polyaromatics exist, analogous approaches to repurpose unsaturated polymers (e.g., polybutadiene) are scarce. In this work, we propose a method to upcycle polybutadiene, one of the most widely used commercial rubbers, via a mild, metal-free allylic amination reaction. The resulting materials have tunable thermal and surface wetting properties as a function of both sulfonamide identity and grafting density. Importantly, this approach maintains the parent alkene microstructure without evidence of olefin reduction, olefin transposition, and/or chain scission. Based on these findings, we anticipate future applications in the remediation of complex elastomers and vulcanized rubbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.