Abstract

Strict conditions such as hypoxia, overexpression of glutathione (GSH), and high concentration of hydrogen peroxide (H2O2) in the tumor microenvironment (TME) limit the therapeutic effects of reactive oxygen species (ROS) for photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT). Here we fabricated a biocatalytic Janus nanocomposite (denoted as UPFB) for ultrasound (US) driven SDT and 808 nm near-infrared (NIR) light mediated PDT by combining core-shell-shell upconversion nanoparticles (UCNPs, NaYF4:20%Yb,1%Tm@NaYF4:10%Yb@NaNdF4) and a ferric zirconium porphyrin metal organic framework [PCN-224(Fe)]. Our design not only substantially overcomes the inefficient PDT effect arising from the inadequate Förster resonance energy transfer (FRET) process from UCNPs (donor) to MOFs (acceptor) with only NIR laser irradiation, but also promotes the ROS generation via GSH depletion and oxygen supply contributed by Fe3+ ions coordinated in UPFB as a catalase-like nanozyme. Additionally, the converted Fe2+ from the foregoing process can achieve CDT performance under acidic conditions, such as lysosomes. Meanwhile, UPFB linked with biotin exhibits a good targeting ability to rapidly accumulate in the tumor region, verified by fluorescence imaging and T2-weighted magnetic resonance imaging (MRI). In a word, it is believed that the synthesis and antitumor detection of UPFB heterostructures render them suitable for application in cancer therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.