Abstract

NaYF <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> : 0.02Ermiddot <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</i> Yb-PVP composite nanofibers with the diameter of ~400 nm have been prepared by electrospinning. Field emission scanning electron microscope and X-ray diffraction have been utilized to characterize morphology and structure of the as-prepared electrospun nanofibers. Their up-conversion luminescence is investigated under a 980-nm excitation. Green (538 and 520 nm), red (655 nm), and blue (405 nm) emissions are observed in the up-conversion luminescence spectra, and the intensity of these three emissions changes differently with the variety of Yb content, which has been interpreted successfully in this letter. The color of NaYF <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> : 0.02Ermiddot <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</i> Yb-PVP nanofibers under a 980-nm excitation can be changed from green rarr white rarr yellow gradually via changing the Yb content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.