Abstract

Vascular cell adhesion molecule 1 (VCAM1) is a member of the Immunoglobulin superfamily and encodes a cell surface sialoglycoprotein expressed in cytokine-activated endothelium. This type I membrane protein mediates leukocyte-endothelial cell adhesion, facilitates the downstream signaling, and may play a role in the development of artherosclerosis and rheumatoid arthritis. Accumulating evidence has demonstrated that VCAM1 exerts an anti-apoptotic effect in several tumor tissues such as ovarian cancer and breast cancer. Intracerebral hemorrhage (ICH) is the second most common subtype of stroke with high morbidity and mortality, which imposes a big burden on individuals and the whole society. These together prompted us to question whether VCAM1 has some association with neuron apoptosis during the pathological process of ICH. An ICH rat model was established and assessed by behavioral tests in order to explore the role of VCAM1 after ICH. Up-regulation of VCAM1 was observed in brain areas surrounding the hematoma following ICH by western blotting and immunohistochemistry. Immunofluorescence manifested VCAM1 was strikingly increased in neurons, but not in astrocytes and microglia. Furthermore, we detected that neuronal apoptosis marker active caspase-3 had co-localizations with VCAM1. At the same time, Bcl-2 was also co-localized with VCAM1. Taken together, our findings suggested that VCAM1 might be involved in the neuronal apoptosis and pathophysiology of ICH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.