Abstract
Transition-metal dichalcogenide MoS2 nanostructures have attracted tremendous attention due to their unique properties, which render them efficient nanoscale functional components for multiple applications ranging from sensors and biomedical probes to energy conversion and storage devices. However, despite the wide application range, the possibility to tune their size, shape, and composition is still a challenge. At the same time, the correlation of the structure with the optoelectronic properties is still unresolved. Here, we propose a new method to synthesize various morphologies of molybdenum sulfide nanocrystals, on the basis of ultrashort-pulsed laser fragmentation of MoS2 platelets. Depending on the irradiation conditions, multiple MoSx morphologies in the form of nanoribbons, nanospheres, and photoluminescent quantum dots are obtained. Besides the detailed structural analysis of the various crystals formed, the structure–property relation is investigated and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.