Abstract

In situ monitoring of electrocatalytic processes at solid-liquid interfaces is essential for the fundamental understanding of reaction mechanisms, yet quite challenging. Herein, Pt-on-Au nanocatalysts with a Au-core Pt-satellite superstructure have been fabricated. In such Pt-on-Au nanocatalysts, the Au cores can greatly amplify the Raman signals of the species adsorbed on Pt, allowing the in situ surface-enhanced Raman spectroscopy (SERS) study of the electrocatalytic reactions on Pt. Using the combination of an electrochemical method and in situ SERS, size effects of Pt on the catalytic performance of the core-satellite nanocomposites towards CO and methanol electrooxidation are revealed. It is found that such Pt-on-Au nanocomposites show improved activity and long-term stability for the electrooxidation of CO and methanol with a decrease in the Pt size. This work demonstrates an effective strategy to achieve the in situ monitoring of electrocatalytic processes and to simultaneously boost their catalytic performance towards electrooxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.