Abstract

Gold nanoparticles (AuNPs) have been demonstrated to serve as effective nanomaterial-based enzyme mimetics (nanozymes) for a number of enzymatic reactions under mild conditions. The intrinsic glucose oxidase and peroxidase activities of single AuNPs and Ag-Au nanohybrids, respectively, were investigated by single NP collision electrochemical measurements. A significantly high turnover number of nanozymes was obtained from individual catalytic events compared with the results from the classical, ensemble-averaged measurements. The unusual enhancement of catalytic activity of single nanozymes is believed to originate from the high accessible surface area of monodispersed NPs and the high activities of carbon-supported NPs during single-particle collision at a carbon ultramicroelectrode. This work introduces a new method for the precise characterization of the intrinsic catalytic activities of nanozymes, giving further insights to the design of high-efficiency nanomaterial catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.