Abstract

Pseudocercospora (previously Mycosphaerella) fijiensis is a hemibiotroph fungus and the causal agent of black Sigatoka disease, one of the most significant threats to banana production worldwide. Only a few genomics reports have paid any attention to effector proteins, which are key players in pathogenicity. These reports focus on canonical effectors: small secreted proteins, rich in cysteines, containing a signal peptide and no transmembrane domain. Thus, bias in previous reports has resulted in the non-canonical effectors being, in effect, excluded from the discussion of effectors in P. fijiensis pathogenicity. Here, using WideEffHunter and EffHunter, bioinformatic tools which identify non-canonical and canonical effectors, respectively, we predict, for the first time, the full effectorome of P. fijiensis. This complete effectorome comprises 5179 proteins: 240 canonical and 4939 non-canonical effectors. Protein families related to key functions of the hemibiotrophic lifestyle, such as Salicylate hydroxylase and Isochorismatase, are widely represented families of effectors in the P. fijiensis genome. An analysis of the gene distribution in core and dispensable scaffolds of both classes of effectors revealed a novel genomic structure of the effectorome. The majority of the effectors (canonical and non-canonical) were found to be harbored in the core scaffolds, while dispensable scaffolds harbored less than 10% of the effectors, all of which were non-canonical. Additionally, we found the motifs RXLR, YFWxC, LysM, EAR, [Li]xAR, PDI, CRN, and ToxA in the effectors of P. fijiensis. This novel genomic structure of effectors (more enriched in the core than in the dispensable genome), as well as the occurrence of effector motifs which were also observed in four other fungi, evidences that these phenomena are not unique to P. fijiensis; rather, they are widely occurring characteristics of effectors in other fungi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.