Abstract

This study evaluates the influence of paper substrate selection on the electrochemical response of an electrochemical paper-based analytical device (ePAD). Various paper substrates commonly employed in this type of devices such as cellulose, nitrocellulose and glass-fibre based medical grade materials are evaluated using chronoamperometric measurements. Both theoretical modelling and experimental analyses are conducted to understand the diffusion behaviour of widely employed two redox probes, [Fe(CN)6]3− and FcMeOH. Findings show that glass fibre substrates show similar performance to liquid drop conditions while nitrocellulose cause a decrease in current after a short measurement period, mainly due to a thin-layer effect. Cellulose-based substrates decrease the diffusivity of redox species, especially for charged species, indicating potential limitations in their use for chronoamperometric measurements. The study offers valuable insights into the electrochemical behaviour of paper substrates in ePADs, laying the groundwork for future research in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.