Abstract

Benzonitrile oxides undergo 1,3-dipolar cycloaddition reactions with methyl cinnamate to produce the 5-phenyl and 4-phenyl regioisomers in approximately an 80:20 ratio. However, use of N,N-diethylcinnamide as the dipolarophile unexpectedly resulted in the formation of the 5-phenyl and 4-phenyl regioisomers in a 23:77 ratio. Studies have shown that this phenomena occurs only for tertiary cinnamides. In addition, it has been demonstrated that the phenyl group of tertiary cinnamides is not essential for the reversal of regioselectivity since crotonamides produce the same results and trends as the cinnamides. However, since acrylates and acrylamides both produce the 5-carbonyl regioisomers, it can be concluded that the beta-substituent is playing a key role for the unexpected results by possibly increasing steric interactions between the dipole and dipolarophile in the transition state. Transition state energies were calculated for the regioisomeric cycloadduct pairs derived from several crotonamides as well as methyl crotonate. These calculations indicate that steric factors are indeed responsible for the reversal of regioselectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.