Abstract
The ab initio calculations have shown that the atoms in the beryllium dimer are covalently bound at the low-lying vibrational energy levels with ν=0–4, while at the higher levels with ν=5–11 the atoms are bonded by the van der Waals forces near the right turning points. The developed ab initio modified EMO potential function, in distinction with the original EMO function, which was used for a description of the experimental vibrational levels, not only has the correct dissociation energy, but also describes all twelve vibrational energy levels with a smaller RMS error of less than 0.4cm−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.