Abstract

Acoustic trauma is a feature of the industrial age, in general, and mechanized warfare, in particular. Noise-induced hearing loss (NIHL) and tinnitus have been the number 1 and number 2 disabilities at U.S. Veterans hospitals since 2006. In a reversal of original protocols to identify candidate genes associated with monogenic deafness disorders, unbiased genome-wide association studies now direct animal experiments in order to explore genetic variants common in Homo sapiens. However, even these approaches must utilize animal studies for validation of function and understanding of mechanisms. Animal research currently focuses on genetic expression profiles since the majority of variants occur in non-coding regions, implying regulatory divergences. Moving forward, it will be important in both human and animal research to define the phenotypes of hearing loss and tinnitus, as well as exposure parameters, in order to extricate genes related to acoustic trauma versus those related to aging. It has become clear that common disorders like acoustic trauma are influenced by large numbers of genes, each with small effects, which cumulatively lead to susceptibility to a disorder. A polygenic risk score, which aggregates these small effect sizes of multiple genes, may offer a more accurate description of risk for NIHL and/or tinnitus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.