Abstract
Cyclotriazadisulfonamide (CADA) inhibits HIV at submicromolar levels by specifically down-modulating cell-surface and intracellular CD4. The specific biomolecular target of CADA compounds is unknown, but previous studies led to an unsymmetrical binding model. To test this model, methods were developed for effective synthesis of diverse, unsymmetrical CADA compounds. A total of 13 new, unsymmetrical target compounds were synthesized, as well as one symmetrical analogue. The new compounds display a wide range of potency for CD4 down-modulation in CHO·CD4-YFP cells. VGD020 (IC(50) = 46 nM) is the most potent CADA compound discovered to date, and VGD029 (IC(50) = 730 nM) is the most potent fluorescent analogue. Structure-activity relationships are analyzed from the standpoint of additive or nonadditive energy effects of different substituents. They appear to be consistent with the zipper-type mechanism in which entropy costs are reduced for additional stabilizing interactions between the small molecule and its protein target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.