Abstract

In propagation based phase contrast imaging, intensity patterns are recorded on a x-ray detector at one or multiple propagation distances, called in-line holograms. They form the input of an inversion algorithm that aims at retrieving the phase shift induced by the object. The problem of phase retrieval in in-line holography is an ill-posed inverse problem. Consequently an adequate solution requires some form of regularization with the most commonly applied being the classical Tikhonov regularization. While generally satisfying this method suffers from a few issues such as the choice of the regularization parameter. Here, we offer an alternative to the established method by applying the principles of Bayesian inference. We construct an iterative optimization algorithm capable of both retrieving the unknown phase and determining a multi-dimensional regularization parameter. In the end, we highlight the advantages of the introduced algorithm, chief among them being the unsupervised determination of the regularization parameter(s). The proposed approach is tested on both simulated and experimental data and is found to provide robust solutions, with improved response to typical issues like low frequency noise and the twin-image problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.