Abstract

In chemometrics, calibration model adaptation is desired when training- and test-samples come from different distributions. Domain-invariant feature representation is currently a successful strategy to realize model adaptation and has received wide attention. The paper presents a nonlinear unsupervised model adaptation method termed as domain adaption regularization-based kernel partial least squares regression (DarKPLS). DarKPLS aims to minimize the source and target distributions in a low-dimensional latent space projected from the reproducing kernel Hilbert space (RKHS) generated with the labeled source data and unlabeled target data. Specially, the distributional means and variances between source and target latent variables are aligned in the RKHS. By extending existing domain invariant partial least square regression (di-PLS) with the projected maximum mean discrepancy (PMMD) to reduce the mean discrepancy in the RKHS further, DarKPLS could realize fine-grained domain alignment that further improves the adaptation performance. DarKPLS is applied to the γ-polyglutamic acid fermentation dataset, tobacco dataset and corn dataset, and it demonstrates improved prediction results in comparison with No adaptation partial least squares (PLS), null augmented regression (NAR), extended linear joint trained framework (ExtJT), scatter component analysis (SCA) and domain-invariant iterative partial least squares (DIPALS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.