Abstract

Unsupervised domain adaptation (UDA) enables knowledge transfer from a labeled source domain to an unlabeled target domain. However, UDA performance often relies heavily on the accuracy of source domain labels, which are frequently noisy or missing in real applications. To address unreliable source labels, we propose a novel framework for extracting robust, discriminative features via iterative pseudo-labeling, queue-based clustering, and bidirectional subdomain alignment (BSA). The proposed framework begins by generating pseudo-labels for unlabeled source data and constructing codebooks via iterative clustering to obtain label-independent class centroids. Then, the proposed framework performs two main tasks: rectifying features from both domains using BSA to match subdomain distributions and enhance features; and employing a two-stage adversarial process for global feature alignment. The feature rectification is done before feature enhancement, while the global alignment is done after feature enhancement. To optimize our framework, we formulate BSA and adversarial learning as maximizing a log-likelihood function, which is implemented via the Expectation–Maximization algorithm. The proposed framework shows significant improvements compared to state-of-the-art methods on Office-31, Office-Home, and VisDA-2017 datasets, achieving average accuracies of 91.5%, 76.6%, and 87.4%, respectively. Compared to existing methods, the proposed method shows consistent superiority in unsupervised domain adaptation tasks with both fully and weakly labeled source domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.