Abstract
Spectral clustering is a very popular approach which has been successfully used in unsupervised classification of polarimetric synthetic aperture radar (PolSAR) imagery. However, due to its high computational complexity, spectral clustering can only be applied to small data sets. This article provides a framework for spectral clustering of large-scale PolSAR data. As computing and processing the pairwise-based affinity matrix is the bottleneck of the spectral clustering approach, we first introduce a representative points-based scheme in which a memory-saving and computationally tractable affinity matrix is designed. The subsequent spectral analysis can be solved efficiently. Second, a simple one-parameter superpixel algorithm is introduced to generate representative points. Through these superpixels, spatial constraints are also naturally integrated into the classification framework. We test the proposed approach on both airborne and space-borne PolSAR images. Experimental results demonstrate its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.