Abstract
Anomaly detection within non‐numerical sequence data has developed into an important topic of data mining, but comparatively little research has been done regarding anomaly detection without training data (unsupervised anomaly detection). One application found in computer security is the detection of a so‐called masquerade attack, which consists of an attacker abusing a regular account. This leaves only the session input, which is basically a string of non‐numerical commands, for analysis. Our previous approach to this problem introduced the use of the so‐called average index difference function for mapping the non‐numerical symbol data to a numerical space. In the present paper, we examine the theoretical properties of the average index difference function, present an enhanced unsupervised anomaly detection algorithm based on the average index difference function, show the parameters to be theoretically inferable, and evaluate the performance using real‐world data. Copyright © 2014 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Stochastic Models in Business and Industry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.