Abstract

SUMMARYTo detect deadlock in distributed systems, the initiator should construct an efficient explicit or implicit global wait‐for graph. In this paper, we present an unstructured deadlock detection algorithm using a gossip protocol in cloud computing environments, where constituting nodes may join and leave at any time. Because of the inherit properties of a gossip protocol, we argue that our proposed deadlock detection algorithm is scalable, fault‐tolerant, and efficient, retaining safety and liveness properties. The correctness proof of the algorithm is also provided. The message complexity of our proposed algorithm is O(n), where n is the number of nodes. Our performance evaluation with scalable settings shows that our approach has a significant advantage over previous deadlock detection algorithms in terms of solving scalability, fault‐tolerance, and complexity–efficiency issues. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.