Abstract

This is a continuation of our work on the use of single dielectric barrier plasma actuators for controlling flow separation on turbine blades in the low-pressure turbine stage at low Reynolds numbers typical of high-altitude cruise. This used a linear cascade of Pratt & Whitney PakB shaped blades to provide generic low-pressure turbine conditions. The flow over one of the blades was documented through surface pressure, laser-Doppler velocimetry, and hot-wire measurements. These were used to define the location and size of the separated flow region on the suction side of the blade. Both steady and unsteady plasma actuators were implemented and found to be effective in separation control. For the unsteady actuators, there was an optimum excitation frequency to reattach the flow that corresponded to a Strouhal number, based on the length of the separated zone and the local freestream velocity, equal to unity. The unsteady actuator was more effective than the steady actuator in reattaching the flow while also requiring less power. It was suggested by the experimental results that the mechanism for the steady actuators was turbulence tripping, whereas the mechanism for the unsteady actuators was to generate a train of spanwise structures that promoted mixing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.