Abstract

Turbine with twin-entry volute has advantage of utilising energy from pulsatile exhaust gas and improving low-speed torque of an internal combustion engine. This paper investigates unsteady performance of a mixed flow turbine with nozzled twin-entry volute confronted by pulsatile incoming flow. The turbine performance at pulsating conditions with different Strouhal numbers (St) is studied via experimentally validated numerical method. Results show that the unsteadiness of turbine performance is enhanced as Strouhal number increases. In particular, the cycle-average efficiency at St = 0.522 is about 3.4% higher than that of quasi-steady condition (St = 0). Instantaneous loss breakdown of the turbine shows that the entropy generation rate of turbine components reduces evidently at pulsating conditions as Strouhal number increases, especially for the nozzle. Specifically, the cycle-averaged reduction of the loss in the nozzle is 37.3% at St = 0.522 compared with that of St = 0. The flow analysis shows that secondary flow which contributes to the majority of loss in the nozzle, including flow separation, horseshoe vortex, and reversed flow near the leading edge, are notably alleviated as Strouhal number increases. The alleviation of the flow structures are resulted from two reasons: one is that the flow distortion at the nozzle inlet is evidently depressed by the pulsating conditions, the other is that the inertia of the low momentum flow in the nozzle damps flow evolution at pulsating incoming flow. Consequently, the loss is reduced and the turbine performance is benefited by the pulsating inflows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.