Abstract

This study investigates the unsteady mixed convection flow past a vertical porous flat plate moving through a binary mixture in the presence of radiative heat transfer and nth-order Arrhenius type of irreversible chemical reaction by taking into account the diffusion-thermal (Dufour) and thermo-diffusion (Soret) effects. Assuming an optically thin radiating fluid and using a local similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically by applying shooting iteration technique together with fourth-order Runge-Kutta integration scheme. Graphical results for the dimensionless velocity, temperature, and concentration distributions are shown for various values of the thermophysical parameters controlling the flow regime. Finally, numerical values of physical quantities, such as the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are presented in tabular form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.