Abstract

Abstract The phenomena of unsteady magnetohydrodynamics (MHD) natural convection flow in an inclined square cavity filled with nanofluid and containing a heated circular obstacle at its center with heat generation/absorption impact are examined numerically. The cavity’s right and left walls are maintained at low temperatures, while the remaining walls are adiabatic. The volumetric external force, MHD, is applied across the inclined cavity. A penalty formulation-based finite element method is used to solve the nonlinear set of governing equations iteratively. The numerical scheme and results are validated through a comparison with the benchmark results, and it shows that our solutions are in good agreement with them. The results are shown in terms of contours of streamlines, isotherms, and average Nusselt number. It is observed that MHD alters the streamlines, isotherms, and average Nusselt number and dominates the flow as compared to any other physical parameter. The average Nusselt number is found sensitive to the central obstacle’s size, and it reduces sufficiently when the radius of the inner cylinder increases. For all the parameters, the streamlines’ symmetric pattern holds, such that the anti-clockwise cells on the left side of the cavity have their symmetric clockwise cells on the right side.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.