Abstract

This work investigates the unsteady magnetohydrodynamic flow of generalized second grade fluid through a porous medium with Hall effects on heat and mass transfer. The second grade fluid with a fractional derivative is used for the constitutive equation. A second-order fractional backward difference formula in the temporal direction and a spectral collocation method in the spatial direction are proposed to solve the model numerically. In the numerical implementation, a fast method is applied to decrease the memory requirement and computational cost. The velocity, temperature, and concentration profiles are discussed through graphs. The effects of various parameters on the velocity profiles, temperature field, and concentration field are shown. Results indicate that as the fractional derivative γ increases and the Hall parameter m decreases, the amplitudes of the velocity components decrease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.