Abstract

For the rst time, the problem of impulsive oblique stagnation-point flow on a vertical cylinder along with mixed convection heat transfer due to buoyancy forces has been solved in this study. The uid at rest with uniform temperature, T1, around the cylinder starts flowing towards it at strength rate of k, and the cylinder temperature rises to Tw at t = 0, simultaneously. The governing equations induced by the impinging flow on the constant-temperature vertical cylinder at any obliqueness angle, , have been reducedto ODEs by using similarity transformations, and then they have been solved numerically. Considering a sample case of incompressible flow with Re = 1 and Pr = 0:7, the results of Nusselt number and similarity functions of velocity and temperature distributions have been obtained for di erent values of time and angle, . At the initial instants of time, the Nusselt number, regardless of 's magnitude, has large values; for example Nu = 5:1 at = 0:01. As time passes, the value of the Nusselt number reduces intensely within ashort period of time (until  0:4), and then it changes with a moderate reduction rate, such that in the steady-state situation, its value reaches 0.67, 0.61, and 0.51 for obliqueness angles = 10, 30, 60.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.