Abstract

Ship hydrodynamics in a constant waterway have been well studied. With a coordinate system fixed on the moving ship, the boundary value problem (BVP) is usually treated as a steady one. However, the hydrodynamics of a ship moving in confined waterways with abrupt changes in width or depth are complex due to their unsteady nature. The studies on such unsteady problems are insufficient. In the engineering practice, the hydrodynamic unsteadiness can be fully reflected by a scenario when a ship enters a lock. Prior studies have predominantly focused on predicting the ships' hydrodynamic forces without considering the unsteady terms on the free-surface boundary conditions. Obviously, such steady or quasi-steady methods overlooked the crucial unsteady phenomena on free water surface. To address this gap, the present study introduces a novel three-level difference scheme to discretize the free surface condition, preserving unsteady terms while maintaining temporal continuity of cells on the free surface. With the implementation of such fully unsteady BVP, we observed some interesting unsteady free surface motions, which were not well documented in the existing literature. To verify our new observations, as well as to validate the numerical method proposed in this study, two physical model tests were designed and conducted in a towing tank: a submerged ellipsoid enters a deep lock at relatively high speeds, and a box enters a shallow and narrow lock at very low speeds. The discussion is highlighted on the unsteady waves in front of the moving bodies, as well as the unsteady resistance induced by such waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.