Abstract

A transonic turbine stage is computed by means of an unsteady Navier–Stokes solver. A two-equation turbulence model is coupled to a transition model based on integral parameters and an extra transport equation. The transonic stage is modeled in two dimensions with a variable span height for the rotor row. The analysis of the transonic turbine stage with stator trailing edge coolant ejection is carried out to compute the unsteady pressure and heat transfer distribution on the rotor blade under variable operating conditions. The stator coolant ejection allows the total pressure losses to be reduced, although no significant effects on the rotor heat transfer are found both in the computer simulation and the measurements. The results compare favorably with experiments in terms of both pressure distribution and heat transfer around the rotor blade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.