Abstract

This paper presents those flow parameters at which coherent structures appear in the blade tip cavities of shrouded turbine blades. To the authors’ knowledge, this is reported for the first time in the open literature. The unsteady flow in a shroud cavity is analysed based on experimental data recorded in a labyrinth seal test rig. The unsteady static wall pressure in the shroud cavity inlet and outlet is measured using time-resolving pressure sensors. Sensors are located at staggered circumferential positions to allow cross-correlation between signals. The unsteady pressure signals are reduced using Fourier analysis and cross-correlation in combination with digital filters. Based on the data, a theory is formulated explaining the phenomena reflected in the measurements. The results suggest that pressure fluctuations with distinct numbers of nodes are rotating in the shroud cavity outlet. Moreover, modes with different node numbers appear to be superimposed, rotating at a common speed in circumferential direction. The pressure fluctuations are not found at all operating points. Further analysis indicates that the pressure fluctuations are present at operating points matching distinct parameters correlating with the cavity flow coefficient. Unsteady RANS simulations predict similar flow structures for the design operating point of the test rig.

Highlights

  • This paper presents and analyses unsteady flow phenomena measured in the cavity outlet of a turbine shroud labyrinth seal

  • Measurement data of multiple operating points is available for analysis

  • The unsteady phenomenon, which is the subject of this study, is present in the spectrum at three operating points

Read more

Summary

Introduction

The design of modern, efficient turbomachinery requires the consideration of secondary flow during early design stages (Cumpsty, 2010). In order to do so, the numerical tools used during the design are subject to continuous improvements. The design tools must account for unsteady flow phenomena in addition to steady-state or time-averaged secondary flow

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.