Abstract

Unsteady absorption characteristics of sulfur dioxide by an atmospheric water droplet in motion are predicted numerically and analyzed theoretically to recognize the physical mass transport processes inside an aerosol droplet, which is frequently encountered in the atmosphere. Considering the absorption of sulfur dioxide by a droplet in cloud or fog with various velocities, three different Reynolds numbers, viz., Re g=0.643, 1.287, and 12.87 are studied and compared with each other. The results indicate that for the Reynolds number of 0.643, sulfur dioxide always penetrates toward the droplet centerline throughout the entire absorption period. This is due to the mass transfer dominated by diffusion along the radial direction. In contrast, when the Reynolds number is 12.87, the strength of the vortex motion inside the droplet is strong enough. It results in that, most of the time the concentration contours parallel the streamlines and the lowest SO 2 concentration is located at the vortex center. As a consequence, the diffusion distance is reduced by a factor of three and the absorption time for the droplet reaching the saturated state is shortened in a significant way. With regard to an intermediate Reynolds number such as 1.287, a two-stage mass transfer process can be clearly identified. In the first stage, it is dominated by one-dimensional diffusion, in which over 50% sulfur dioxide is absorbed before the saturated state is reached. In the second stage, the vortex motion mainly controls the mass transfer. However, the contour core is inconsistent with the vortex center. This is because the characteristic time of mass diffusion is in a comparable state with that of droplet internal circulation. The present study elucidates that the strength of a droplet's internal motion plays a vital role in determining SO 2 absorption process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.