Abstract

Imidazo[1,2‐c]quinazoline is widely established as biologically spectral active materials, while their optoelectronic properties were seldom investigated in the literature. In this context, this research work introduced two donors of varying strength, such as triphenylamine (TP) and phenothiazine (PZ) units, into the phenanthroimidazo [1,2‐c] quinazoline acceptor unit to form donor‐acceptor type luminescence materials such as TPQZ and PZQZ, respectively and were characterized by NMR and mass spectroscopy. Both these materials exhibited intramolecular charge transfer (ICT) type absorption (∼380−450 nm) and emission (∼540−600 nm) characteristics, which attributed to the electronic transition occurring from the HOMO of the PZ/TP donor to the LUMO+1 and LUMO+2 of the imidazo [1,2‐c] quinazoline acceptor unit, as predicted using DFT calculations. Increasing the electron donor strength was not only limited to fine‐tuning the π→π* based localized (∼400−450 nm) to ICT (∼450−650 nm) emission characteristics in both the solution and solid‐state conditions but also found to improve the zone of inhibition to 16 mm against Staphylococcus aureus/Bacillus subtilis bacterial species. The scope of realizing the luminescence nature of this acceptor unit is further expanded towards tagging biological samples such as E. coli. This work opens up a new paradigm in developing luminescent materials for optoelectronic and biological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.