Abstract

The impact of organic light emitting diodes (OLEDs) in modern life is witnessed by their wide employment in full-color, energy-saving, flat panel displays and smart-screens; a bright future is likewise expected in the field of solid state lighting. Cyclometalated iridium complexes are the most used phosphorescent emitters in OLEDs due to their widely tunable photophysical properties and their versatile synthesis. Blue-emitting OLEDs, suffer from intrinsic instability issues hampering their long term stability. Backed by computational studies, in this work we studied the sky-blue emitter FIrpic in both ex-situ and in-situ degradation experiments combining complementary, mutually independent, experiments including chemical metathesis reactions, in liquid phase and solid state, thermal and spectroscopic studies and LC-MS investigations. We developed a straightforward protocol to evaluate the degradation pathways in iridium complexes, finding that FIrpic degrades through the loss of the picolinate ancillary ligand. The resulting iridium fragment was than efficiently trapped "in-situ" as BPhen derivative 1. This process is found to be well mirrored when a suitably engineered, FIrpic-based, OLED is operated and aged. In this paper we (i) describe how it is possible to effectively study OLED materials with a small set of readily accessible experiments and (ii) evidence the central role of host matrix in trapping experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.