Abstract

Libraries of near-isogenic lines (NILs) are a powerful plant genetic resource to map quantitative trait loci (QTL). Nevertheless, QTL mapping with NILs is mostly restricted to genetic main effects. Here we propose a two-step procedure to map additive-by-additive digenic epistasis with NILs. In the first step, a generation means analysis of parents, their F(1) hybrid, and one-segment NILs and their triple testcross (TTC) progenies is used to identify in a one-dimensional scan loci exhibiting QTL-by-background interactions. In a second step, one-segment NILs with significant additive-by-additive background interactions are used to produce particular two-segment NILs to test for digenic epistatic interactions between these segments. We evaluated our approach by analyzing a random subset of a genomewide Arabidopsis thaliana NIL library for growth-related traits. The results of our experimental study illustrated the potential of the presented two-step procedure to map additive-by-additive digenic epistasis with NILs. Furthermore, our findings suggested that additive main effects as well as additive-by-additive digenic epistasis strongly influence the genetic architecture underlying growth-related traits of A. thaliana.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.