Abstract

The present research reports a detailed in silico analysis of chromatin assembly factor-1 (CAF-1) family in human malaria parasite Plasmodium falciparum. Our analysis revealed five chromatin assembly factor-1 genes in P. falciparum (PfCAF-1) and the PfCAF-1 family was divided into two classes where, Class A belongs to the CAF-1 complex and others are kept in Class B. For comparative studies, orthologs of PfCAF-1 family were identified across 53 eukaryotic species and evolutionary relationships were drawn for different CAF-1 subfamilies. The phylogenetic analysis revealed grouping of evolutionary-related species together, although, divergence was observed in branching pattern. A detailed analysis of domain composition highlighted species-specific features viz. species-specific KDDS repeats of 84 amino acids were identified in PfCAF-1A whereas, members of CAF-1C/RbAp48 and RbAp46 subfamily exhibited least variation in size and domain composition. The qRT-PCR analysis revealed upregulation of PfCAF-1 members in trophozoite or schizont stage. Furthermore, a comparative expression analysis of the available transcriptome and proteome data along with qRT-PCR analysis revealed mixed expression patterns (coordination as well as non-coordination between different studies). Protein-protein interaction network analyses of PfCAF-1 family were carried out highlighting important complexes based on interologs. The PfRbAp48 was found to be highly connected with a total of 108 PPIs followed by PfRbAp46. The results unravel insights into the PfCAF-1 family and identify unique features, thus opening new perspectives for further targeted developments to understand and combat malaria menace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.