Abstract

Perfect (optical) vortices (PVs) have attracted significant interest in the optical community owing to their well-defined annular ring whose near-field radial profile is independent of orbital angular momentum (OAM). Although it is a general belief that it is not possible to perform quantitative OAM measurement of PVs by modal decomposition, here we show, both theoretically and experimentally, that the OAM content of a PV can be measured quantitatively in both the near- and far-fields, including superpositions of OAM within one perfect vortex. Our work will be of interest to the large community who seek to use such structured light fields in various applications, including optical trapping and tweezing and optical communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.