Abstract

Unobtrusive and inexpensive technologies for monitoring the cardiovascular health of heart failure (HF) patients outside the clinic can potentially improve their continuity of care by enabling therapies to be adjusted dynamically based on the changing needs of the patients. Specifically, cardiac contractility and stroke volume (SV) are two key aspects of cardiovascular health that change significantly for HF patients as their condition worsens, yet these parameters are typically measured only in hospital/clinical settings, or with implantable sensors. In this work, we demonstrate accurate measurement of cardiac contractility (based on pre-ejection period, PEP, timings) and SV changes in subjects using ballistocardiogram (BCG) signals detected via a high bandwidth force plate. The measurement is unobtrusive, as it simply requires the subject to stand still on the force plate while holding electrodes in the hands for simultaneous electrocardiogram (ECG) detection. Specifically, we aimed to assess whether the high bandwidth force plate can provide accuracy beyond what is achieved using modified weighing scales we have developed in prior studies, based on timing intervals, as well as signal-to-noise ratio (SNR) estimates. Our results indicate that the force plate BCG measurement provides more accurate timing information and allows for better estimation of PEP than the scale BCG (r2 = 0.85 vs. r2 = 0.81) during resting conditions. This correlation is stronger during recovery after exercise due to more significant changes in PEP (r2 = 0.92). The improvement in accuracy can be attributed to the wider bandwidth of the force plate. ∆SV (i.e., changes in stroke volume) estimations from the force plate BCG resulted in an average error percentage of 5.3% with a standard deviation of ±4.2% across all subjects. Finally, SNR calculations showed slightly better SNR in the force plate measurements among all subjects but the small difference confirmed that SNR is limited by motion artifacts rather than instrumentation.

Highlights

  • Cardiovascular diseases (CVD) are the leading cause of death in the United States, according to the American Heart Association

  • Half of the subjects stood on the scale first during baseline measurement while the other half stood on the force plate first to account for any bias due to the order in which the subject stood on the force plate versus the scale

  • We have shown in this paper that force plate BCG allows for more reliable pre-ejection period (PEP) estimations than scale BCG due to more accurate timing information that can be attributed to the wider bandwidth of the force plate

Read more

Summary

Introduction

Cardiovascular diseases (CVD) are the leading cause of death in the United States, according to the American Heart Association. A prevalent CVD is Heart Failure (HF), which affects. 5.7 million Americans and causes one in nine national deaths [1]. HF is characterized by the heart’s inability to provide sufficient blood to the organs and tissues [2]. The annual health care costs of HF in the United States are $30.7 billion, most of which relate to hospitalization costs [3]. Readmission rates to the hospital after a discharge for HF patients are 25% within 30 days. Readmissions result from cardiovascular events, such as when ejection fraction is insufficient, and ventricular filling pressures are subsequently elevated; these elevated pressures are observed at least 6

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.