Abstract

A systematic procedure is introduced for modeling charge-neutral non-polar surfaces of ionic minerals containing polyatomic anions. By integrating distance- and charge-based clustering to identify chemical species within the mineral bulk, our pipeline, PolyCleaver, renders a variety of theoretically viable surface terminations. As a demonstrative example, this approach was applied to forsterite (Mg2SiO4), unveiling a rich interface landscape based on interactions with formaldehyde, a relevant multifaceted molecule, and more particularly in prebiotic chemistry. This high-throughput method, going beyond techniques traditionally applied in the modeling of minerals, offers new insights into the potential catalytic properties of diverse surfaces, enabling a broader exploration of synthetic pathways in complex mineral systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.