Abstract

Delocalized organic π-radicals are intrinsically amphoteric redox systems; however, achieving their multistage redox capability presents a challenge. In addition, their instability often hampers their synthesis, isolation, and characterization. Herein, we report the synthesis of a stable π-extended nanographene π-radical (NR1) and its isolation in the crystalline form. NR1 exhibits an unusual four-stage amphoteric redox behavior, as revealed by cyclic voltammetry measurements. The stable charged species, including a cation and a radical dication, are characterized using spectroscopic methods. This study demonstrates that π-extension could serve as a viable approach to unlock the multistage redox ability of delocalized organic radicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.