Abstract

Rechargeable magnesium batteries (rMBs) are promising candidates for next-generation batteries in which sulfides are widely used as cathode materials. The slow kinetics, low redox reversibility, and poor magnesium storage stability induced by the large Coulombic resistance and ionic polarization of Mg2+ ions have obstructed the development of high-performance rMBs. Herein, a Cu1.8S1-xSex cathode material with a two-dimensional sheet structure has been prepared by an anion-tuning strategy, achieving improved magnesium storage capacity and cycling stability. Element-specific synchrotron radiation analysis is evidence that selenium incorporation has indeed changed the chemical state of Cu species. Density functional theory calculations combined with kinetics analysis reveal that the anionic substitution endows the Cu1.8S1-xSex electrode with favorable charge-transfer kinetics and low ion diffusion barrier. The principal magnesium storage mechanisms and structural evolution process have been revealed in details based on a series of ex situ investigations. Our findings provide an effective heteroatom-tuning tactic of optimizing electrode structure toward advanced energy storage devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.