Abstract

This paper has double scope. In the first part we study the limiting empirical spectral distribution of a n × n symmetric matrix with dependent entries. For a class of generalized martingales we show that the asymptotic behavior of the empirical spectral distribution depends only on the covariance structure. Applications are given to strongly mixing random fields. The technique is based on a blend of blocking procedure, martingale techniques and multivariate Lindeberg’s method. This means that, for this class, the study of the limiting spectral distribution is reduced to the Gaussian case. The second part of the paper contains a survey of several old and new asymptotic results for the empirical spectral distribution for Gaussian processes, which can be combined with our universality results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.