Abstract
This paper summarizes a numerical study of the dependence of the fractal dimension on the energy of certain open Hamiltonian systems, which present different kind of symmetries. Owing to the presence of chaos in these systems, it is not possible to make predictions on the way and the time of escape of the orbits starting inside the potential well. This fact causes the appearance of fractal boundaries in the initial-condition phase space. In order to compute its dimension, we use a simple method based on the perturbed orbits’ behavior. The results show that the fractal dimension function depends on the structure of the potential well, contrary to other properties, such us the probability of escape, which has already been postulated as universal in earlier papers (see for instance [C. Siopis, H.E. Kandrup, G. Contopoulos, R. Dvorak, Universal properties of escape in dynamical systems, Celest. Mech. Dyn. Astr. 65 (57–68) (1997)]), from the study of Hamiltonians with different number of possible exits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.