Abstract

We consider disordered systems of directed polymer type, for which disorder is so-called marginally relevant. These include the usual (short-range) directed polymer model in dimension (2+1), the long-range directed polymer model with Cauchy tails in dimension (1+1) and the disordered pinning model with tail exponent 1/2. We show that in a suitable weak disorder and continuum limit, the partition functions of these different models converge to a universal limit: a log-normal random field with a multi-scale correlation structure, which undergoes a phase transition as the disorder strength varies. As a by-product, we show that the solution of the two-dimensional Stochastic Heat Equation, suitably regularized, converges to the same limit. The proof, which uses the celebrated Fourth Moment Theorem, reveals an interesting chaos structure shared by all models in the above class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.