Abstract

The universality phenomenon asserts that the distribution of the eigenvalues of random matrix with i.i.d. zero mean, unit variance entries does not depend on the underlying structure of the random entries. For example, a plot of the eigenvalues of a random sign matrix, where each entry is +1 or -1 with equal probability, looks the same as an analogous plot of the eigenvalues of a random matrix where each entry is complex Gaussian with zero mean and unit variance. In the current paper, we prove a universality result for sparse random n by n matrices where each entry is nonzero with probability $1/n^{1-\alpha}$ where $0<\alpha\le1$ is any constant. One consequence of the sparse universality principle is that the circular law holds for sparse random matrices so long as the entries have zero mean and unit variance, which is the most general result for sparse random matrices to date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.