Abstract

Correlation analysis serves as an easy-to-implement estimation approach for the quantification of the interaction or connectivity between different units. Often, pairwise correlations estimated by sliding windows are time-varying (on different window segments) and window size-dependent (on different window sizes). Still, how to choose an appropriate window size remains unclear. This paper offers a framework for studying this fundamental question by observing a critical transition from a chaotic-like state to a nonchaotic state. Specifically, given two time series and a fixed window size, we create a correlation-based series based on nonlinear correlation measurement and sliding windows as an approximation of the time-varying correlations between the original time series. We find that the varying correlations yield a state transition from a chaotic-like state to a nonchaotic state with increasing window size. This window size-dependent transition is analyzed as a universal phenomenon in both model and real-world systems (e.g., climate, financial, and neural systems). More importantly, the transition point provides a quantitative rule for the selection of window sizes. That is, the nonchaotic correlation better allows for many regression-based predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.